On Effectiveness of Anomaly Detection Approaches against Unseen Presentation Attacks in Face Anti-Spoofing
نویسندگان
چکیده
While face recognition systems got a significant boost in terms of recognition performance in recent years, they are known to be vulnerable to presentation attacks. Up to date, most of the research in the field of face anti-spoofing or presentation attack detection was considered as a two-class classification task: features of bona-fide samples versus features coming from spoofing attempts. The main focus has been on boosting the anti-spoofing performance for databases with identical types of attacks across both training and evaluation subsets. However, in realistic applications the types of attacks are likely to be unknown, potentially occupying a broad space in the feature domain. Therefore, a failure to generalize on unseen types of attacks is one of the main potential challenges in existing anti-spoofing approaches. First, to demonstrate the generalization issues of two-class anti-spoofing systems we establish new evaluation protocols for existing publicly available databases. Second, to unite the data collection efforts of various institutions we introduce a challenging Aggregated database composed of 3 publicly available datasets: Replay-Attack, Replay-Mobile and MSU MFSD, reporting the performance on it. Third, considering existing limitations we propose a number of systems approaching a task of presentation attack detection as an anomaly detection, or a one-class classification problem, using only bona-fide features in the training stage. Using less training data, hence requiring less effort in the data collection, the introduced approach demonstrates a better generalization properties against previously unseen types of attacks on the proposed Aggregated database. Keywords-face anti-spoofing; face presentation attack detection; one-class classifier; anomaly detection;
منابع مشابه
Robust multimodal face and fingerprint fusion in the presence of spoofing attacks
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accura...
متن کاملFace Liveness Detection Based on Skin Blood Flow Analysis
Face recognition systems have been widely adopted for user authentication in security systems due to their simplicity and effectiveness. However, spoofing attacks, including printed photos, displayed photos, and replayed video attacks, are critical challenges to authentication, and these spoofing attacks allow malicious invaders to gain access to the system. This paper proposes two novel featur...
متن کاملA Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملFace Spoofing Attacks Detection in Biometric System
Biometric system have evolved very well in last few years and in this digital era secure automatic solution for face spoofing is needed. Combining existing anti-spoofing approaches to come up with more robust mechanism is needed for preventing system from various spoofing types. In this paper, detecting face from image and extracting data from it and then optimizing that information with datase...
متن کاملIntegration of image quality and motion cues for face anti-spoofing: A neural network approach
Many trait-specific countermeasures to face spoofing attacks have been developed for security of face authentication. However, there is no superior face anti-spoofing technique to deal with every kind of spoofing attack in varying scenarios. In order to improve the generalization ability of face anti-spoofing approaches, an extendable multi-cues integration framework for face anti-spoofing usin...
متن کامل